Quan hệ giữa các giá trị lượng giác của hai góc đặc biệt (bù nhau, phụ nhau, đối nhau, hơn kém (pi ), hơn kém (frac{pi }{2}), …)

1. Lý thuyết

+ Hai góc đối nhau \(\alpha \)\( - \alpha \)

\(\sin ( - \alpha ) =  - \sin \alpha \);

\(\tan ( - \alpha ) =  - \tan \alpha \)

\(\cos ( - \alpha ) = \cos \alpha \);

\(\cot ( - \alpha ) =  - \cot \alpha \)

+ Hai góc phụ nhau \(\alpha \)\({90^ \circ } - \alpha \)

\(\sin \left( {{{90}^ \circ } - \alpha } \right) = \cos \alpha \);

\(\tan \left( {{{90}^ \circ } - \alpha } \right) = \cot \alpha \)

\(\cos \left( {{{90}^ \circ } - \alpha } \right) = \sin \alpha \);

\(\cot \left( {{{90}^ \circ } - \alpha } \right) = \tan \alpha \)

+ Hai góc bù nhau \(\alpha \)\({180^ \circ } - \alpha \)

\(\sin \left( {{{180}^ \circ } - \alpha } \right) = \sin \alpha \);

\(\tan \left( {{{180}^ \circ } - \alpha } \right) =  - \tan \alpha \)

\(\cos \left( {{{180}^ \circ } - \alpha } \right) =  - \cos \alpha \);

\(\cot \left( {{{180}^ \circ } - \alpha } \right) =  - \cot \alpha \)

+ Hai góc \(\alpha \)\({90^ \circ } + \alpha \)

\(\sin \left( {{{90}^ \circ } + \alpha } \right) = \cos \alpha \);

\(\tan \left( {{{90}^ \circ } + \alpha } \right) =  - \cot \alpha \)

\(\cos \left( {{{90}^ \circ } + \alpha } \right) =  - \sin \alpha \);

\(\cot \left( {{{90}^ \circ } + \alpha } \right) =  - \tan \alpha \)

+ Hai góc \(\alpha \)\({180^ \circ } + \alpha \)

\(\sin \left( {{{180}^ \circ } + \alpha } \right) =  - \sin \alpha \);

\(\tan \left( {{{180}^ \circ } + \alpha } \right) = \tan \alpha \)

\(\cos \left( {{{180}^ \circ } + \alpha } \right) =  - \cos \alpha \);

\(\cot \left( {{{180}^ \circ } + \alpha } \right) = \cot \alpha \)

Chú ý: Với \(k \in \mathbb{Z}\), ta có:

\(\sin \left( {2k{{.180}^ \circ } + \alpha } \right) = \sin \alpha \);

\(\tan \left( {k{{.180}^ \circ } + \alpha } \right) = \tan \alpha \)

\(\cos \left( {2k{{.180}^ \circ } + \alpha } \right) = \cos \alpha \);

\(\cot \left( {k{{.180}^ \circ } + \alpha } \right) = \cot \alpha \)

2. Ví dụ minh họa

Ví dụ 1. Cho tam giác ABC, khi đó ta có

\(\sin A = \sin ({180^ \circ } - A) = \sin (B + C)\)

\(\sin \frac{A}{2} = \cos \left( {{{90}^ \circ } - \frac{A}{2}} \right) = \cos \left( {\frac{{B + C}}{2}} \right)\)

Ví dụ 2. Tính các giá trị lượng giác \(\sin {570^ \circ },\cos ( - {1035^ \circ }),\tan ({1500^ \circ }).\)

\(\begin{array}{l}\sin {570^ \circ } = \sin ({360^ \circ } + {180^ \circ } + {30^ \circ }) = \sin ({180^ \circ } + {30^ \circ }) =  - \sin {30^ \circ } =  - \frac{1}{2}\\\cos ( - {1035^ \circ }) = \cos ( - {3.2.180^ \circ } + {45^ \circ }) = \cos ({45^ \circ }) = \frac{{\sqrt 2 }}{2}\\\tan ({1500^ \circ }) = \tan ({8.180^ \circ } + {60^ \circ }) = \tan ({60^ \circ }) = \sqrt 3 .\end{array}\)


Bình luận

Chia sẻ

  • Bảng giá trị lượng giác của các góc đặc biệt

    Bảng giá trị lượng giác của các góc đặc biệt Gồm: \({0^ \circ },{30^ \circ },{45^ \circ },{60^ \circ },{90^ \circ },{120^ \circ },{135^ \circ },{150^ \circ },{180^ \circ }\)

  • Giá trị lượng giác của một góc từ 0 đến 180

    (sin alpha = {y_0}) là tung độ của M (cos alpha = {x_0}) là hoành độ của M (tan alpha = frac{{sin alpha }}{{cos alpha }} = frac{{{y_0}}}{{{x_0}}}(alpha ne {90^o})) (cot alpha = frac{{cos alpha }}{{sin alpha }} = frac{{{x_0}}}{{{y_0}}}(alpha ne {0^o},alpha ne {180^o}))

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Báo lỗi - Góp ý

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí